
www.manaraa.com

A Parallel Upgrade for Existing RelationalDatabase Management SystemsHarald Kosch�hkosch@lip.ens-lyon.fr Matthieu Exbrayatyexbrayat@lisiory.insa-lyon.frAbstractThis papers presents a new and low cost approach of paralellising databases, usinga parallel DBMS build on a network of workstations. The originality lays in thefact that it works with an existing commercialised DBMS. Coherency is left to theDBMS, and the prototype side only cares for optimal data distribution and queryexecution. This two-sides architecture allows us to introduce a new de�nition, theCommon Criteria Unit, extending the classical ways of distributing relations, whichgoal is to introduce some basic intelligence into the distribution method.KeywordsParallelism, Networks of Workstations, Relational Databases, Data Distribution�Laboratoire d'Informatique du Parall�elisme. Ecole Normale Sup�erieure de LyonyLaboratoire d'Ing�enierie des Systêmes d'Information. Institut National des Sciences Appliqu�eesde Lyon 1

www.manaraa.com

1 IntroductionLast �ve years have seen the arising of parallel techniques into Database Manage-ment Systems (DBMS). This is done to provide quick access to large and very largedatabases to many simultaneous users. Two domains are especially concerned : On-line Transaction Processing (OLTP, i.e. : business databases) and Query Processing(QP, i.e. : data extraction). Both have speci�c needs. OLTP deals with fast andreliable updates, as long as it involves unduplicatable means, such as money, rawmaterials, or plane tickets. Query processing deals more with high bandwidth andwide storage. Speed of updates, and time in general, are less signi�cant there, as thekind of information is either getting slowly out of date (e.g. : books list), or bringingfew considerable incoherence (e.g. : statistical studies data).Many studies have been driven through OLTP or QP goals. The main topics aredata distributing [1, 2], Parallel Execution Plans, and duplicating strategies [3].Most of those research have been driven through the assumption that parallelDBMS would run on Massively Parallel Machines (MPM). It must be noticed thatsuch machines, even bringing an incomparable rise of performance, are still quiteseldom, and represent a big investment. This brought hybrid architectures, such asworkstation clusters, or network of workstations to come to front page of research.More than suggestive aspects, such as global cost, it can be considered that worksta-tions are widely used by many companies.It provides us with robust computing power in comparison to most parallel ma-chines on the market. Moreover one can easily add new workstations to the existingsystem, while satisfying ???.This allows us to believe that virtual parallelism between small- to middle-sizecomputers is a promising domain of investigation. We propose in this paper to con-sider a di�erent approach of parallel databases, based on an original architecture,which is hybrid in at least two ways : �rst, by using a network of workstation; sec-2

www.manaraa.com

ondly by recycling and integrating the existing DBMS.In this paper we present in section 2 the speci�cities we had to face to use work-station networks, and how distributing techniques �t to them. Section 3 describesour BDMS's structure and abilities. Section 4 presents our implementation and givesan example of use.2 Hardware-driven assumption2.1 Networks of workstations2.2 distributing techniques3 Prototype description3.1 Global architectureOur prototype uses three kinds of machines :� An existing DBMS (further : EDBMS). It contains the actual complete andcoherent database.� A server. This machine plays the role of the interface between requesters anddata.� Calculators. Those are machines, hardwarely speaking similar to the server.They handle a double function : storing the data in a distributed way, andextracting them in a parallel way.The server receives users and applications requests.A request interpreter analysis �rst those requests �rst examines them and actsdi�erently depending on their meaning. Transactions (i.e. : updates, deletions, and3

www.manaraa.com

Client

PEP

Generator

Distribution

Manager

Data

Extractor

Request Interpret

EDBMS

Calculator 1

Interface

Execution Storage

4

5

3

Q
ue

ry

A
ns

w
er

Data

Server

D
at

a

Instruction

Data

Data
Pseudo-QueryU

pd
at

e

Query

Instruction (Transaction)

1 2

Calculator n

In
st

ru
ct

io
ns

Interface

Execution Storage

4

5

3

2 : Ask for data extraction

1 : Ask for data distribution

4 : Data (raw and results)

5 : Data (raw and results)

3 : Instructions

Figure 1: DBMS architecturecreations) are directly handed to the EDBMS. Queries are parallelized and executedon the calculators. This is done by speci�c modules, one generating the parallel exe-cution plan and looking at is execution (Parallel Query Optimizer); another allowingto know how the data is distributed (Distribution Manager); a third communicatingwith the EDBMS to extract new data from it (Data Extractor).Calculators both handle local storage and sub-query execution. To keep this twofunctions working with few interferences (allowing data reception while executing asub query) they also need a local interface, in charge of information movements (i.e.: receiving data and instructions, and sending results).The existing DBMS is kept apart of the parallel phase, except during the datadistribution (see section 3.2).It must be precised that the description given above could drive to any real hard-ware implementation, from MPM to networks of workstations, even using virtualprocessors [4]. The following section describes how the data are distributed, and how4

www.manaraa.com

it best �ts to networks of workstations.3.2 Data strategies3.2.1 Data unitOur data distribution technique is derived from the block distribution methods usedin GAMMA [5] and in the study of Seeger [6]. Our method is based on distributionfunctions decided and known by the distribution manager. Each of the blocks repre-sents a set of tuples grouped by hashing or range partitioning.In the case of hashing, we used a hash function (based on the value of one or moreattributes of the tuple) to determine the site of storage. For the range partition-ing (R.P.), the tuples are distributed according to the value of an attribute, usingcontiguous range domains.There exists a third distribution technique, the round robin method, which makesa round distributing (of tuple or blocks) from one site to another. We do not appliedit here, as it generates much network overhead and CPU costs on each concernedprocessor [6].The most important point of the block method is the way, blocks are structured.As we are looking for a distribution allowing fast access and low network tra�c, thebasic idea was on one hand to keep together data which is highly supposed to becompared and on the other hand to distribute the data on the attribute, supposed tobe most selected. This decision is based on spying the already processed queries andretaining the correlation between comparisons and data.For this reason, we named these blocks Common Criteria Units (ccu). Themeaning of the criteria can be used in several ways, as hashing or range partitionningcriteria, but also as a semantic criteria (when allowed by the kind of relation e.g.....). It must be precised here that the goal of our prototype is mainly to allow access5

www.manaraa.com

to document databases. This means few relations with a huge amount of tuples anda limited number of join possibilities. This also signi�es meaningfull relations (keywords). Thus, the blocks size can be quite large, but the transfers are still limited.The ccu structure expresses as: ccuNumber; tuple*, where ccuNumber (the unique"key" number of the ccu), followed by the list of tuples. The mapping of the ccus todisks is determined by the Distribution Manager, using a B*-Tree structure.3.2.2 Data distributionData is extracted from the EDBMS at launch time, relation by relation. Original datadistribution is done by the DBMS manager, according to the most common selectionattributes. These attributes commonly appear in applications (i.e. compiledqueries). We establish a quick count of the number and frequency of queries (ortransactions) using them. This is quite similar to distributed database study. Betterpl can be realised later when comparing actual use rates (obtained by storing andanalysing submitted queries and used ccus) with the theoretical ones.Coherency of data is kept by updating the uccs immediatly after updating isprocessed in the EDBMS. Commit and abort informations are sent from the EDBMSto the request interpreter, which informs the client. In the case of commit, theDistribution Manager is asked by the request interpreter to update its uccs. To insurecoherency during update phases, concerned ccus are locked in order to forbid their use.The update is done in two phases. First, the old ccus are sent to the DistributionManager, which updates them. The new versions are then resent to their storagecalculators to replace the older ones. A complete redistribution can be done afterconsequent updates. The old ccus are redistributed according to the new criterias,and then removed. This can also be done, wehen a new distribution is initiated.Of course, updates and deletes could be very long without using the parallelfunction of our DBMS. Selecting the concerned tuple(s) can be done with a �rst6

www.manaraa.com

selection of the concerned uccs, then with the selection of the matching tuples, and�nally with the adequate treatment (on the EDBMS) of the latters.3.3 Parallel query execution plansParallel query execution plans are based on the model of DPL-graphs [7] 1. ADPL-graph not only describes the data ow when executing a speci�c query againsta data base but also simulates aspects of communication, memory management andrun-time constraints.The nodes within a DPL-graph represent various operators which can be dividedinto three di�erent categories: basic, communication and control operators:� Basic operators are atomic operators working on relation partitions. Theyare part of the implementation of a relational operator. and work independentlyon each processor, holding a part of the implicated relations. Basic operatorsare graphically represented by circles whose inscription detail the functionality.� Communication operators implement data redistribution. For their graphi-cal representation boxes were chosen. The kind of repartition that is to be doneis stated in their inscription.� Control operators are used to control the query processing. They are repre-sented by lozenges. Inscriptions describe the kind of control to be performed.Special annotations specify the execution parameters.All operators are enriched with annotations depending on the characteristics ofa parallel environment. Those annotations specify for example the method how thestored data is accessed and the kind of data dependency that exists between relational1The term is derived from the data, precedence and loop dependencies7

www.manaraa.com

operations are applied to the nodes of the graph which represent these relational op-erations. Additionally, the di�erenttypes and degrees of parallelism, namely pipeline,task and data parallelism, can be referred to.In order to develop the idea of DPL-graphs, a step-by-step approach leads fromsimple query processing trees to the more complex notion of DPL-graphs. The �rststep is to introduce low-level implementations into the existing model of query pro-cessing trees. The resulting graphs are called D-graphs (see �gure 2 left scheme foran example). Unlike conventional processing query trees a D-graph not only displaysthe data ow during the execution of a given query, but also refers to aspects of theused hash-partition method, i.e. the data dependency. By adding annotations,di�erent aspects of the applied parallelism during execution become visible and cantherefore be related to the quality of the query execution process.
build
hash table
R

probe
hash table
R

RR

probe
hash table
R

build
hash table
R

R

2
3

1

1

2

3

2 R 3

any−to−any redistribution

2 R3R

2 R3RR1

store
result

...
sequential
...

...
sequential
...

...
pipelined
...

...
pipelined
...

...
sequential
...

RR

R

build bucket
hash table
 R

build bucket
hash table
 R

probe bucket
hash table
 R

probe bucket
hash table
 R

1

2

3

1

2 3

2 R3

any−to−any redistribution

2 R3R

2 R3RR1

store
result

...
sequential
...

...
pipelined
...

...
pipelined
...

...
sequential
...

...
sequential
...

Figure 2: Left scheme: DPL-graph for q = R1 ./ R2 ./ R3 showing the precedencedependecncy. Right scheme: Introducing the loop dependency for the example.Interdependencies between operators that are not related to the data which isbeing processed, are not visible in simple query processinf trees yet used. Thereforeour DPL-graphs also consider precedence dependencies. We speak of precedencedependency if an operator must be terminated before another operator can start8

www.manaraa.com

working { although no data dependency is involved. This relationship between twooperators is marked by a double edge (see �gure 2, left scheme).If relations cannot be held in main memory, they are split into buckets which haveto be processed seperately. This way, a loop dependency is established between theoperator that is providing the data bucket by bucket and the operator that is workingon that data. The resulting graph is called DPL-graph (see �gure 3.3, right scheme),because it is powerful enough to visualize data dependency, precedence dependencyand loop dependency.3.4 Query executionThe instruction messages consists of two parts; the �rst one is a tuple (ccus, crite-ria), the second one speci�es the result distribution (i.e. the number of ccu and thedestination calculators).The instructions are kept in the calculator's interface module and transmittedone by one to the execution module. Possible generated delays, when waiting forincoming uccs, are partially solved by allowing an instruction to execute only whenthe incomings ccus are arrived at the execution site. Instructions are then scanned,from the oldest to the last one arrived, and transmitted to the Execution moduleas soon as they can be executed. This solution allows to maintain a good globalexecution time between queries.4 Parallel query optimizationWe implemented yet the parallel query optimizer, it takes the optimized query plan bethe EDBMS and generates a parallel query execution plan in the form of a DPL-graph,as explained in section 3.3.Fig. 3 shows the architecture of our parallel optimizer. The parallelizer modul9

www.manaraa.com

Cost
manager

Catalog
manager

 Parallel Execution Plan

Parallel
Environ.
manager

Parallelization

Sequential execution plan
provided by the EDBMS

(DPL−graph)

Sequential Optimizer
of the EDBMS

Input Query

Distribution
ManagerFigure 3: Optimizer architecture.bases on randomized search strategies which is motivated by the increasing numberof alternative execution plans in connection with the use of parallelism. The use ofthose randomized optimization algorithms seems to be the most promising solutionto this problem [8].The set of all possible parallel query execution plans (PEP) is regarded as a searchspace in which the optimal execution plan has to be found. Each PEP is being associ-ated with a certain cost, obtained by a cost function applied to it. A transformationis a modi�cation exercised upon a PEP to obtain another PEP. According to thestudies of Lanzelotte [8], two particular transformations were chosen to exploit thewhole search space : the swap and the join exchange. The swap transformation in-verses the order of the input relations for one join, as the join exchange permutatetwo consecutive joins.Such transformations are applied to the current PEP until no more cost improvementscan be found.The parallel optimizer architecture (see �g. 3) was constructed as an extensiblearchitecture, in order to provide a robust approach to changing environments. Allinformations concerning the parallel execution and the relation speci�c data is keptout of the so called Parallelizer and put into special managers.10

www.manaraa.com

Two groups of manager can be distinguished, �rst the hardware speci�c ones :� The parallel environnement manager, which collects all information of the avail-able hardware con�guration (e.g. the number of available calculators).� The cost manager, which provides us with the cost constants (e.g. bandwithand latency of the communication network).Second, the data speci�c manager:� The catalog manager which contains static informations about the databaserelations (e.g. attribut and relation size).� The Distribution manager which describes the distribution function.5 Conclusion and future workIl est beau le proto! On va interfacer avec une base documentaire sous Oracle. C'estmarrant, ya peu de tables et elles sont assez grosses et puis les enregistrements ontplein de signi�cation, on peut donc esperer un classement "intelligent".We tend to develop a distributed B-Tree structure.References[1] D.J. DeWitt and J. Gray. Parallel database systems : the future of high perfor-mance database systems. Communications of the ACM, 35(6):85{98, June 1992.[2] R. Gallersd�orfer and M. Nicola. Improving Performance in Replicated Databasesthrough Relaxed Coherency. In Proceedings of the 21st VLDB Conference, Zurich,Switzerland, 1995. 11

www.manaraa.com

[3] D. Chamberlin and F. Schmuck. Dynamic Data Distribution (D3) in a Shared-Nothing Multiprocessor Data Store. In Proceedings of the 18th VLDB Conference,Vancouver, British Columbia, Canada, 1992.[4] D. Schneider D.J. DeWitt J. Naughton and S. Seshardi. Pratical skew handlingin parallel joins. In Proceeding of the International Conference on Very LargeDatabases, Vancouver, British Columbia, August 1992.[5] D.J. DeWitt S. Ghandeharizadeh D. Schneider A. Bricker H.-I. Hsiao and R. Ras-mussen. The GAMMA database machine project. IEEE Transactions on Knowl-edge and Data Engineering, 2(1):44{62, June 1990.[6] B. Seeger and P.-�A. Larson. Multi-Disk B-trees. In Proceedings of the ACMSIGMOD International Conference of Managment of Data, Miami Beach, USA,December 1991.[7] L. Brunie and H. Kosch. DPL graphs - a powerful representation of parallel rela-tional query execution plans. In LLNCS Springer, editor, EUROPAR'96, August1996. accepted for publication.[8] R.S.G. Lanzelotte P. Valduriez and M. Za��t. Industrial-Strength Parallel QueryOptimization: Issues and Lessons. Information Systems - An International Jour-nal, 1994.
12

